Learning Mixtures of Submodular Functions for Image Collection Summarization
نویسندگان
چکیده
We address the problem of image collection summarization by learning mixtures of submodular functions. Submodularity is useful for this problem since it naturally represents characteristics such as fidelity and diversity, desirable for any summary. Several previously proposed image summarization scoring methodologies, in fact, instinctively arrived at submodularity. We provide classes of submodular component functions (including some which are instantiated via a deep neural network) over which mixtures may be learnt. We formulate the learning of such mixtures as a supervised problem via large-margin structured prediction. As a loss function, and for automatic summary scoring, we introduce a novel summary evaluation method called V-ROUGE, and test both submodular and non-submodular optimization (using the submodular-supermodular procedure) to learn a mixture of submodular functions. Interestingly, using non-submodular optimization to learn submodular functions provides the best results. We also provide a new data set consisting of 14 real-world image collections along with many human-generated ground truth summaries collected using Amazon Mechanical Turk. We compare our method with previous work on this problem and show that our learning approach outperforms all competitors on this new data set. This paper provides, to our knowledge, the first systematic approach for quantifying the problem of image collection summarization, along with a new data set of image collections and human summaries.
منابع مشابه
A Unified Multi-Faceted Video Summarization System
T his paper addresses automatic summarization and search in visual data comprising of videos, live streams and image collections in a unified manner. In particular, we propose a framework for multi-faceted summarization which extracts keyframes (image summaries), skims (video summaries) and entity summaries (summarization at the level of entities like objects, scenes, humans and faces in the vi...
متن کاملNoisy Submodular Maximization via Adaptive Sampling with Applications to Crowdsourced Image Collection Summarization
We address the problem of maximizing an unknown submodular function that can only be accessed via noisy evaluations. Our work is motivated by the task of summarizing content, e.g., image collections, by leveraging users’ feedback in form of clicks or ratings. For summarization tasks with the goal of maximizing coverage and diversity, submodular set functions are a natural choice. When the under...
متن کاملLarge-Margin Learning of Submodular Summarization Methods
In this paper, we present a supervised learning approach to training submodular scoring functions for extractive multi-document summarization. By taking a structured predicition approach, we provide a large-margin method that directly optimizes a convex relaxation of the desired performance measure. The learning method applies to all submodular summarization methods, and we demonstrate its effe...
متن کاملLarge-Margin Learning of Submodular Summarization Models
In this paper, we present a supervised learning approach to training submodular scoring functions for extractive multidocument summarization. By taking a structured prediction approach, we provide a large-margin method that directly optimizes a convex relaxation of the desired performance measure. The learning method applies to all submodular summarization methods, and we demonstrate its effect...
متن کاملLearning Mixtures of Submodular Shells with Application to Document Summarization
We introduce a method to learn a mixture of submodular “shells” in a large-margin setting. A submodular shell is an abstract submodular function that can be instantiated with a ground set and a set of parameters to produce a submodular function. A mixture of such shells can then also be so instantiated to produce a more complex submodular function. What our algorithm learns are the mixture weig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014